Inhalt anspringen

Prof. Dr. Burkhard Lenze

Schnelle Fakten

Sprechzeiten

nach E-Mail-Absprache

Zur Person

Publikationen

Monographie

  • B. Lenze, Mathematik und Quantum Computing, 2nd ed. Berlin: Logos Verlag, 2020.
    Publikation öffnen
  • B. Lenze, Basiswissen Angewandte Mathematik – Numerik, Grafik, Kryptik, 2nd ed. Wiesbaden: Springer Vieweg Verlag, 2020 [Online]. Available: https://www.base-search.net/Record/17468c4497363a0fdb34f5b77a22dbae1111580a1f19a2ef80a677bf0895ffdd
    Publikation öffnen
  • B. Lenze, Basiswissen Analysis, 2nd ed. Wiesbaden: Springer Vieweg Verlag, 2020 [Online]. Available: https://www.base-search.net/Record/a45601a14fc40188b1a6928bb13f09725e1b35502dc6908121fe5d6590b00eff
    Publikation öffnen
  • B. Lenze, Basiswissen Lineare Algebra, 2nd ed. Wiesbaden: Springer Vieweg Verlag, 2020 [Online]. Available: https://www.base-search.net/Record/7368da07b4d55c0f9060f2d8053c996ed25951865d2a9f61b9c25c64c319f5c8
    Publikation öffnen
  • B. Lenze, Mathematik und Quantum Computing, 1st ed. Berlin: Logos Verlag, 2018.
    Publikation öffnen
  • B. Lenze, Einführung in die Fourier-Analysis. Berlin: Logos-Verlag, 2010.
    Publikation öffnen
  • B. Lenze, Einführung in die Mathematik neuronaler Netze, 3rd ed. Berlin: Logos Verlag, 2009.
    Publikation öffnen

Journalartikel

  • B. Lenze, “On the points of regularity of multivariate functions of bounded variation,” Real Analysis Exchange, vol. 29, no. 2, pp. 647–656, 2004 [Online]. Available: https://projecteuclid.org/journals/real-analysis-exchange/volume-29/issue-2/On-the-points-of-regularity-of-multivariate-functions-of-bounded/rae/1149698555.pdf
    Publikation öffnen
  • B. Lenze, “Note on interpolation on the hypercube by means of sigma-pi neural networks,” Neurocomputing, vol. 61, pp. 471–478, 2004.
    Publikation öffnen
  • B. Lenze and J. Raddatz, “Effects of dilation and translation on a perceptron-type learning rule for higher order Hopfield neural networks,” International journal of neural systems, vol. 12, no. 2, pp. 83–93, 2002.
    Publikation öffnen
  • B. Lenze, “On a perceptron-type learning rule for higher order Hopfield neural networks including dilation and translation,” Neurocomputing, vol. 48, no. 1–4, pp. 391–401, 2002.
    Publikation öffnen
  • B. Lenze, “Improving Leung’s bidirectional learning rule for associative memories,” IEEE Transactions on Neural Networks, vol. 12, no. 5, pp. 1222–1226, 2001.
    Publikation öffnen
  • B. Lenze, “A General Approach to Dyadic Periodic Interpolation Based on Discrete Sigma-Pi Orthogonality,” Journal of Computational Analysis and Applications, vol. 3, no. 4, pp. 271–280, 2001.
    Publikation öffnen
  • B. Lenze, “Mathematics and Neural Networks - A Glance at some Basic Connections,” Acta Applicandae Mathematicae, vol. 55, pp. 303–311, 1999.
    Publikation öffnen
  • B. Lenze, “Complexity preserving increase of the capacity of bidirectional associative memories by dilation and translation,” Neural Networks, vol. 11, no. 6, pp. 1041–1048, 1998.
    Publikation öffnen
  • B. Lenze, “Linking discrete orthogonality with dilation and translation for incomplete sigma-pi neural networks of Hopfield-type,” Discrete Applied Mathematics, vol. 89, no. 1–3, pp. 169–180, 1998.
    Publikation öffnen
  • B. Lenze, “Dilation and translation for incomplete sigma-pi neural networks of Hopfield-type - a case study,” International journal of neural systems, vol. 7, no. 6, pp. 689–695, 1996.
    Publikation öffnen
  • B. Lenze, “Hyperbolic sigma-pi neural network operators for compactly supported continuous functions,” Advances in Computational Mathematics, vol. 5, pp. 163–172, 1996.
    Publikation öffnen
  • B. Lenze, “On local and global sigma-pi neural networks a common link,” Advances in Computational Mathematics, vol. 2, no. 4, pp. 479–491, 1994.
    Publikation öffnen
  • B. Lenze, “Note on a density question for neural networks,” Numerical Functional Analysis and Optimization, vol. 15, no. 7–8, pp. 909–913, 1994.
    Publikation öffnen
  • B. Lenze, “How to make sigma-pi neural networks perform perfectly on regular training sets,” Neural Networks, vol. 7, no. 8, pp. 1285–1293, 1994.
    Publikation öffnen
  • B. Lenze, “Local Behaviour Of Neural Network Operators - Approximation And Interpolation,” Analysis : International Mathematical Journal of Analysis and its Applications, vol. 13, no. 4, pp. 377–387, 1993.
    Publikation öffnen
  • B. Lenze, “A hyperbolic modulus of smoothness for multivariate functions of bounded variation,” Approximation Theory and its Applications, vol. 7, no. 1, pp. 1–15, 1991.
    Publikation öffnen
  • B. Lenze, “On constructive one-sided approximation of multivariate functions of bounded variation,” Numerical Functional Analysis and Optimization, vol. 11, no. 1–2, pp. 55–83, 1990.
    Publikation öffnen
  • B. Lenze, “On the explicit solution of a time-optimal control problem by means of one-sided spline approximation,” Journal of Approximation Theory, vol. 56, no. 3, pp. 297–305, 1989.
    Publikation öffnen
  • B. Lenze, “Uniqueness in best one-sided L1-approximation by algebraic polynomials on unbounded intervals,” Journal of Approximation Theory, vol. 57, no. 2, pp. 169–177, 1989.
    Publikation öffnen
  • B. Lenze, “On one-sided spline approximation operators,” Numerical Functional Analysis and Optimization, vol. 10, no. 1–2, pp. 167–180, 1989.
    Publikation öffnen
  • B. Lenze and F. Locher, “Hermite-Lagrange Two-Point Interpolation Via Peano Kernels,” Results in Mathematics, vol. 16, pp. 253–260, 1989.
    Publikation öffnen
  • B. Lenze, “Operators for one-sided approximation by algebraical polynomials,” Journal of Approximation Theory, vol. 54, no. 2, pp. 169–179, 1988.
    Publikation öffnen
  • B. Lenze, “On Lipschitz-type maximal functions and their smoothness spaces,” Indagationes Mathematicae, vol. 91, no. 1, pp. 53–63, 1988.
    Publikation öffnen
  • B. Lenze, “Note on the connection between two types of maximal functions,” Analysis : International Mathematical Journal of Analysis and its Applications, vol. 8, no. 3–4, pp. 391–395, 1988.
    Publikation öffnen

Lehre

Vorlesungen

  • Mathematik für Informatik 1
  • Mathematik für Informatik 2
  • Mathematische Grundlagen der Verschlüsselungstechnik
  • Mathematik und Quantum Computing

Diese Seite verwendet Cookies, um die Funktionalität der Webseite zu gewährleisten und statistische Daten zu erheben. Sie können der statistischen Erhebung über die Datenschutzeinstellungen widersprechen (Opt-Out).

Einstellungen (Öffnet in einem neuen Tab)