Inhalt anspringen

Change Detection in Automotive Radar based Occupancy Maps using Siamese Networks

Konferenzpaper

Schnelle Fakten

  • Interne Autorenschaft

  • Weitere Publizierende

    Harihara Bharathy Swaminathan, Aron Sommer, Uri Iurgel, Martin Atzmüller

  • Veröffentlichung

    • 2024
  • Publikationszweck

  • Organisationseinheit

  • Fachgebiete

    • Angewandte Informatik
    • Elektrotechnik allgemein
    • Ingenieurinformatik/Technische Informatik
    • Kommunikations- und Informationstechnik
  • Forschungsfeld

    • Robotik

Zitat

H. B. Swaminathan, A. Sommer, U. Iurgel, A. Becker, and M. Atzmüller, “Change Detection in Automotive Radar based Occupancy Maps using Siamese Networks,” in 2024 International Radar Symposium (IRS), 2024, pp. 56–61 [Online]. Available: https://ieeexplore.ieee.org/document/10644246

Abstract

In this paper we present a deep learning based approach for detecting changes or deviations in the context of radar based occupancy grid maps. Specifically, we propose a convolutional neural network (CNN) based architecture to identify spatial changes. As a reference map of the environment, we use occupancy maps generated using detections obtained from automotive radar sensors fitted to the corners of a test-vehicle. For the purpose of similarity learning, a siamese architecture is used. The network is trained with occupancy maps of highway and urban scenes captured over a period of time around the city of Wuppertal, Germany, focusing on construction zones on the road. As per the initial evaluations, the siamese network is able to classify images with construction zones as changes from non-changes i.e. images without construction zones.

Referenzen

Erläuterungen und Hinweise

Diese Seite verwendet Cookies, um die Funktionalität der Webseite zu gewährleisten und statistische Daten zu erheben. Sie können der statistischen Erhebung über die Datenschutzeinstellungen widersprechen (Opt-Out).

Einstellungen (Öffnet in einem neuen Tab)